skip to main content


Search for: All records

Creators/Authors contains: "Shomstein, Sarah"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Neural processing of objects with action associations recruits dorsal visual regions more than the neural processing of objects without such associations. We hypothesized that because the dorsal and ventral visual pathways have differing proportions of magno- and parvocellular input, there should be behavioral differences in perceptual tasks between manipulable and nonmanipulable objects. This hypothesis was tested in college-age adults across five experiments ( Ns = 26, 26, 30, 25, and 25) using a gap-detection task, suited to the spatial resolution of parvocellular processing, and an object-flicker-discrimination task, suited to the temporal resolution of magnocellular processing. Directly predicted from the cellular composition of each pathway, a strong nonmanipulable-object advantage was observed in gap detection, and a small manipulable-object advantage was observed in flicker discrimination. Additionally, these effects were modulated by reducing object recognition through inversion and by suppressing magnocellular processing using red light. These results establish perceptual differences between objects dependent on semantic knowledge.

     
    more » « less
  2. Abstract Objects can be described in terms of low-level (e.g., boundaries) and high-level properties (e.g., object semantics). While recent behavioral findings suggest that the influence of semantic relatedness between objects on attentional allocation can be independent of task-relevance, the underlying neural substrate of semantic influences on attention remains ill-defined. Here, we employ behavioral and functional magnetic resonance imaging measures to uncover the mechanism by which semantic information increases visual processing efficiency. We demonstrate that the strength of the semantic relatedness signal decoded from the left inferior frontal gyrus: 1) influences attention, producing behavioral semantic benefits; 2) biases spatial attention maps in the intraparietal sulcus, subsequently modulating early visual cortex activity; and 3) directly predicts the magnitude of behavioral semantic benefit. Altogether, these results identify a specific mechanism driving task-independent semantic influences on attention. 
    more » « less
  3. Abstract

    This perspective piece discusses a set of attentional phenomena that are not easily accommodated within current theories of attentional selection. We call these phenomena attentional platypuses, as they allude to an observation that within biological taxonomies the platypus does not fit into either mammal or bird categories. Similarly, attentional phenomena that do not fit neatly within current attentional models suggest that current models are in need of a revision. We list a few instances of the “attentional platypuses” and then offer a new approach, that we term dynamically weighted prioritization, stipulating that multiple factors impinge onto the attentional priority map, each with a corresponding weight. The interaction between factors and their corresponding weights determines the current state of the priority map which subsequently constrains/guides attentional allocation. We propose that this new approach should be considered as a supplement to existing models of attention, especially those that emphasize categorical organizations.

    This article is categorized under:

    Psychology > Attention

    Psychology > Perception and Psychophysics

    Neuroscience > Cognition

     
    more » « less
  4. null (Ed.)
  5. Successful interaction with the environment requires the ability to flexibly allocate resources to different locations in the visual field. Recent evidence suggests that visual short-term memory (VSTM) resources are distributed asymmetrically across the visual field based upon task demands. Here, we propose that context, rather than the stimulus itself, determines asymmetrical distribution of VSTM resources. To test whether context modulates the reallocation of resources to the right visual field, task set, defined by memory-load, was manipulated to influence visual short-term memory performance. Performance was measured for single-feature objects embedded within predominantly single- or two-feature memory blocks. Therefore, context was varied to determine whether task set directly predicts changes in visual field biases. In accord with the dynamic reallocation of resources hypothesis, task set, rather than aspects of the physical stimulus, drove improvements in performance in the right- visual field. Our results show, for the first time, that preparation for upcoming memory demands directly determines how resources are allocated across the visual field. 
    more » « less